
Parallel Program Scaling Analysis using Hardware Counters
Shobhit Jagga∗

Indian Institute of Technology Kanpur
Kanpur, India

shobhitj@iitk.ac.in

Preeti Malakar
Indian Institute of Technology Kanpur

Kanpur, India
pmalakar@iitk.ac.in

ABSTRACT
We present a lightweight library that automatically collects several
hardware counters for MPI applications. We analyze the effect of
strong and weak scaling on the counters. We first correlate the
counter values obtained from each process count, and then cluster
the counters to identify counters that are affected similarly due to
scaling. We noted that the effect of last-level cache misses is more
pronounced for some applications such as miniFE.

KEYWORDS
Performance analysis; hardware counter; code characterization

ACM Reference Format:
Shobhit Jagga and Preeti Malakar. 2021. Parallel Program Scaling Analysis
usingHardware Counters. In Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing (HPDC ’21), June
21–25, 2021, Virtual Event, Sweden. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3431379.3464453

1 INTRODUCTION
Large-scale parallel applications are ubiquitous in today’s petas-
cale era. Such applications are routinely executed on different core
counts, often with different problem sizes during each run, as may
be required to realize the science goals. Therefore, it is imperative to
study, and analyze the scaling behavior of applications so that the
production runs are more efficient. Scaling runs show the efficiency
of applications on a given system.One of the approaches for perfor-
mance analyses is profiling applications using hardware counters
[1, 4, 6]. Counters such as cache misses, load/store misses, and
stalled CPU cycles due to memory access provide an understanding
of the behavior of the application on a given system.
Our contribution: We propose using hardware counters for code
characterization. We correlate hardware measurements with appli-
cation scaling to analyze the effect of scaling on the counters. Since
the number of hardware counters are typically large, we correlate
different counters and then perform clustering to identify coun-
ters that affect scalability similarly. This may be used to identify
bottlenecks in parallel programs due to memory, computation and
communication. In this work, we focus on the first two. We used
the Performance Application programming interface (PAPI) [5] that
provides an interface for hardware counter collection. However,
all desirable/available counters cannot be collected simultaneously
due to counter conflicts [4]. Multiplexing provides a resolution to
this via event sets [4], however this may be inaccurate and insuffi-
cient due to limited registers [6], especially if we multiplex between
several counters. We have developed a library that automatically
collects the hardware counters via multiple runs of the application
using a configuration file to collect non-conflicting counters at the

∗Student Author

same time.We used theMPI Profiling Interface (PMPI) for automatic
hardware counter collection using compile-time instrumentation
of MPI codes. We used 32 hardware counters out of the 59 available
counters.

2 RELATEDWORK
Performance modeling techniques are widely used to avoid over-
heads and potential performance deviations arising due to applica-
tion instrumentation. Analytic performance modeling [2] attempts
to characterize application behaviour by analyzing the algorithms
and source code. However, this requires understanding the code.
There has been work on predictive performance models to predict
performance and scalability bottlenecks. Ding et al. [1] propose a
resource based modeling approach by hardware counter collection
to predict the scaling issues and run-time of the application. Lively
et al. [3] model the power consumption alongside performance
modeling to draw better insights into power-performance trade-
offs for multi-core systems. In contrast, we propose correlating and
clustering counters to identify those that affect scalability similarly.

3 APPLICATION SCALING ANALYSIS
We use hardware counters to analyze the scaling performance of
applications. It is infeasible to analyze all counters that may be
present in some systems (∼ 400). We have built a library to auto-
matically collect hardware counters during an application run, and
analyze the impact of strong and weak scaling on the counter val-
ues. Additionally, there may be related counters that show similar
behaviour with scaling. Therefore, we first correlate the counters
(normalized) and then perform clustering to determine their effect
on application behaviour. This also helps to introspect into counters
in a single cluster to identify potential bottlenecks arising due to
memory and computation. This may help identify the cause of per-
formance slowdown by analyzing the behaviour of counters such
as increased cache misses leading to scalability bottlenecks. The re-
quired hardware counters are specified via a configuration file, such
that all of them can be automatically collected via multiple runs of
the application; a set of non-conflicting counters being collected
during every run. We have built a library that uses the MPI Profiling
Interface (PMPI) to instrument the application. We initialize the
PAPI library and insert the PAPI code in the MPI_Init() function
of our library. We accumulate the counters in the MPI_Finalize()
function of our library. Thus there is no source code modification
required to collect the counters.

4 EXPERIMENTS AND RESULTS
We used four benchmarks – HPCG, miniFE, miniGhost and XS-
Bench to perform strong and weak scaling runs on up to 40 2.5
GHz Intel Xeon Gold 5215 cores (3 nodes). The applications were

https://doi.org/10.1145/3431379.3464453


HPDC ’21, June 21–25, 2021, Virtual Event, Sweden Shobhit Jagga and Preeti Malakar

instrumented with our library to collect 32 hardware counters, such
as L1, L2 and L3 cache statistics (misses, hits), memory stalls, TLB
statistics, instruction types (load, store), etc. We used average of
two runs. The counters for all cores were first averaged to represent
a single counter value across all processes. This is done for 10, 20,
30 and 40 processes for both strong and weak scaling runs. A 32𝑋32
correlation matrix is then generated by computing correlations for
all counter pairs from the 4 values per counter corresponding to the
4 process counts (10 – 40). This is done to observe similar behavior
of counters when scaling an application. This matrix is then used
to hierarchically cluster the counters to find counter clusters that
affect the application scaling similarly.

Figures 1 and 2 show the strong and weak scaling correlation
matrices for the four applications. The last counter (last row, last
column) corresponds to total number of cycles for the applica-
tion run. We observe that the correlation matrix of miniFE is

Figure 1: Correlation matrix of 32 hardware counters for four mini-
applications from strong scaling runs on 10 – 40 cores.

distinct. There is strong positive correlation among some of the
counters 10 – 18. These are related to L1 cache load/store misses,
TLB misses, cache line intervention and shared cache line request
counters. We observe that L3 total cache misses (counter #8) has
strong negative correlations with some of the counters 10 – 18.
Specifically we noted that L3 total cache misses (PAPI_L3_TCM)
decrease till 30 processes and then increase at process count 40,
while the number of TLB misses keep decreasing. We also noted
that the number of cache snoops (PAPI_CA_SNP) first decrease
and then increase at process count 40, thus the correlation between
PAPI_L3_TCM and PAPI_CA_SNP is 0.5. This may be due to the
unstructured grid miniFE application. We note that decreased data
size due to strong scaling helped with better data locality initially,
however, increasing using more cores further increased the load
on shared cache (evident from increased snoops, shared cache line
requests) and resulted in more private cache misses (evident from
more L1 and L2 total cache misses at process count of 40). This
may be due to NUMA-unaware placement of MPI ranks, we will
investigate this further in future. We observe similar interesting
trends in the other applications. We also noted that the number
of total cycles is more strongly correlated with the private cache
misses in case of strong scaling. This indicates that the effect of
data-size reduction on caches outweighs other counters’ variations

and is instrumental in determining the application run-time and
performance. We observe clearly that the first 10 and the last 8

Figure 2: Correlation matrix of 32 hardware counters for four mini-
applications from weak scaling runs on 10 – 40 cores.
counters are strongly correlated in weak scaling XSBench runs,
whereas there is no perceivable correlation among the rest. Most
applications show similar trends of the counters. On inspecting
the counters, and the performance of weak scaling runs, we noted
that almost all counters showed increasing trends, including the
total number of cycles. Thus the applications scaled poorly when
weak scaled. We also observe from the Figures 1 and 2 that many
counters have positive correlation in one and negative in the other.
For example, L2 data cache misses, PAPI_L2_DCM (counter #6) and
L2 total cache accesses, PAPI_L2_TCA (counter #30) are strongly
negatively correlated in case of miniFE strong scaling whereas they
are strongly positively correlated in case of miniFE weak scaling.
This indicates that data size per node impacts the counter trends in
miniFE.

5 CONCLUSIONS AND FUTUREWORK
Our library provides an automatic way of collecting several hard-
ware counters without source-code modifications. We presented the
effect of scaling on 32 counters, and noted different counter trends in
four mini-applications for strong scaling on 10 – 40 cores. Potential
future work is to use this approach for more real world applications
with different data sizes and analyze the effect of NUMA-aware
placements with the help of these counters.

REFERENCES
[1] N. Ding and et al. 2019. Using hardware counter-based performance model to

diagnose scaling issues of HPC applications. Neural Comput Applic (2019).
[2] Darren J Kerbyson and Philip W Jones. 2005. A performance model of the par-

allel ocean program. The International Journal of High Performance Computing
Applications (2005).

[3] Charles Lively and et al. 2012. Power-aware predictive models of hybrid
(MPI/OpenMP) scientific applications on multicore systems. Computer Science-
Research and Development 27, 4 (2012), 245–253.

[4] J. M.May. 2001. MPX: Software formultiplexing hardware performance counters in
multithreaded programs. In Proceedings 15th International Parallel and Distributed
Processing Symposium. IPDPS 2001.

[5] Dan Terpstra and et al. 2010. Collecting Performance Data with PAPI-C. In Tools
for High Performance Computing 2009.

[6] Y. C. Wang, J. Wang, J. K. Chen, S. C. Zuo, X. M. Su, and J. Lin. 2020. NeoMPX:
Characterizing and Improving Estimation of Multiplexing Hardware Counters for
PAPI. In 2020 IEEE International Conference on Cluster Computing (CLUSTER).


	Abstract
	1 Introduction
	2 Related Work
	3 Application Scaling Analysis
	4 Experiments and Results
	5 Conclusions and Future Work
	References

